MLOps落地開花,AI資產(chǎn)沉淀和治理成為實(shí)踐新風(fēng)向。隨著業(yè)界對(duì)人工智能研發(fā)效率、團(tuán)隊(duì)協(xié)作、安全保障等需求進(jìn)一步提升,整個(gè)MLOps產(chǎn)業(yè)實(shí)踐呈現(xiàn)出“內(nèi)涵很明確、落地很困難”的現(xiàn)狀。
從技術(shù)內(nèi)涵來(lái)看, MLOps的核心和要求已明確,即圍繞“一個(gè)基礎(chǔ)、兩個(gè)關(guān)鍵、三個(gè)提升”,逐步建設(shè)從需求、開發(fā)、交付到模型運(yùn)營(yíng)的全生命周期運(yùn)營(yíng)管理機(jī)制。一個(gè)基礎(chǔ)是指持續(xù)交付,通過(guò)搭建工廠流水線式的模型生產(chǎn)方式,提高規(guī);a(chǎn)效率。許多頭部企業(yè)都已開始實(shí)踐模式的持續(xù)交付,部分企業(yè)模型研發(fā)效率提升超過(guò)40%。兩個(gè)關(guān)鍵是指持續(xù)訓(xùn)練和持續(xù)監(jiān)控,通過(guò)持續(xù)訓(xùn)練和持續(xù)監(jiān)控搭建高效閉環(huán)的運(yùn)營(yíng)管理體系,提高機(jī)器學(xué)習(xí)可觀察性,保證模型質(zhì)量,增加賦能效果。
三個(gè)提升是指數(shù)據(jù)管理、特征管理、模型管理能力的提升。對(duì)數(shù)據(jù)、特征和模型等AI資產(chǎn)加以沉淀、安全管控和風(fēng)險(xiǎn)治理,提升企業(yè)級(jí)AI治理能力,已成為MLOps新風(fēng)向。
從落地現(xiàn)狀來(lái)看,持續(xù)交付、持續(xù)訓(xùn)練、持續(xù)監(jiān)控和模型治理難度依次提升,產(chǎn)業(yè)界當(dāng)前尚處在提升持續(xù)交付和持續(xù)監(jiān)控能力過(guò)程中,模型治理等僅有少量探索,未來(lái)仍然是AI工程化的重點(diǎn)方向。 v 此外,MLOps的工具市場(chǎng)持續(xù)火熱,端到端的MLOps一體化工具和細(xì)分場(chǎng)景的專項(xiàng)工具都非;馃,端到端工具追求大而全的功能集,專項(xiàng)工具在局部或某些場(chǎng)景下功能和性能較好,例如流水線編排、模型監(jiān)控、特征存儲(chǔ)、可觀測(cè)等工具,未來(lái)MLOps相關(guān)工具可能會(huì)成為AI軟件市場(chǎng)的重要賽道。
商用機(jī)器人 Disinfection Robot 展廳機(jī)器人 智能垃圾站 輪式機(jī)器人底盤 迎賓機(jī)器人 移動(dòng)機(jī)器人底盤 講解機(jī)器人 紫外線消毒機(jī)器人 大屏機(jī)器人 霧化消毒機(jī)器人 服務(wù)機(jī)器人底盤 智能送餐機(jī)器人 霧化消毒機(jī) 機(jī)器人OEM代工廠 消毒機(jī)器人排名 智能配送機(jī)器人 圖書館機(jī)器人 導(dǎo)引機(jī)器人 移動(dòng)消毒機(jī)器人 導(dǎo)診機(jī)器人 迎賓接待機(jī)器人 前臺(tái)機(jī)器人 導(dǎo)覽機(jī)器人 酒店送物機(jī)器人 云跡科技潤(rùn)機(jī)器人 云跡酒店機(jī)器人 智能導(dǎo)診機(jī)器人 |